## DIGITAL STEPPER DRIVE FOR STEPPER MOTORS

CONTROL MODES

- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Camming, Gearing
- Indexer


## COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Master encoder (Gearing/Camming)
- Stepper mode position commands:

Digital: Pulse/Dir, CW/CCW, Quad A/B
Analog: $\pm 10 \mathrm{~V}$ position

- Servo mode commands:

Digital: Pulse/Dir, CW/CCW, Quad A/B
PWM velocity/torque command
Analog: $\pm 10 \mathrm{~V}$ position/velocity/torque
COMMUNICATIONS

- CANopen
- RS-232

FEEDBACK
Incremental Encoders

- Digital quad $A / B$
- Panasonic Incremental A Format
- Aux. quad $A / B$ encoder / encoder out

Absolute Encoders

- EnDat, Absolute A

I/O DIGITAL

- non-isolated, 8 isolated inputs,
- 5 isolated outputs, 2 non-isolated outputs


## ANALOG

- 2 Reference Inputs, 12 -bit

SAFE TORQUE OFF (STO)

- SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

- $6.78 \times 4.70 \times 1.99[172.1 \times 119.3 \times 50.4]$ no heatsink
- $6.78 \times 4.70 \times 3.14$ [172.1 $\times 119.3 \times 79.9$ ] with heatsink


## DESCRIPTION

Stepnet TP2 is a dual-axis, high-performance, DC powered drive for position and velocity control of stepper motors via CANopen. Using advanced FPGA technology, the TP2 provides a significant reduction in the cost per node in multi-axis CANopen systems.
Each of the two axes in the TP2 operate as CANopen nodes under DSP-402 for motion control devices. Supported modes include: Profile Position-Velocity, Interpolated Position Mode (PVT), and Homing.
In microstepping mode stepper command pulses and master encoder for camming or gearing are supported. Servo mode allows $\pm 10 \mathrm{~V}$ analog position/velocity/torque, and PWM velocity/torque control.

There are sixteen high-speed digital inputs, two low-speed inputs for motor temperature switches, and eight optically isolated inputs. Outputs include five opto-isolated SSR and two isolated brake outputs. All inputs and outputs have programmable functions. An RS-232 serial port provides a connection to Copley's CME2 software for commissioning, firmware upgrading, and saving configurations to flash memory.
Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation enabling the drive PWM outputs to be completely powered down without losing position information, or communications with the control system.

## GENERAL SPECIFICATIONS

Test conditions: Load $=$ Wye connected load: $2 \mathrm{mH}+2 \Omega$ line-line. Ambient temperature $=25^{\circ} \mathrm{C},+\mathrm{HV}=\mathrm{HV}_{\max }$

| MODEL | TP2-090-06 | TP2-090-14 |  |
| :---: | :---: | :---: | :---: |
| OUTPUT POWER (EACH AXIS) |  |  |  |
| Peak Current | 7 (5) | 10 (7.1) | Adc (Arms-sine), $\pm 5 \%$ |
| Peak time | 1 | 1 | Sec |
| Continuous current (Note 1) | 5 (3.5) | 10 (7.1) | Adc (Arms-sine) per phase |
| INPUT POWER |  |  |  |
| HVmin~HVmax | +14 to +90 | +14 to +90 | Vdc Transformer-isolated |
| Ipeak | 14 | 20 | Adc (1 sec) peak |
| Icont | 10 | 20 | Adc continuous |
| Aux HV | $4 \mathrm{~W}(T$ | 4 to +90 Vdc , oad on encode | Optional, not required for operation h encoder +5V @ 500 mA ) |

## DIGITAL CONTROL

Digital Control Loops
Sampling rate (time)
Bus voltage compensation
Minimum load inductance

Current, velocity, position. 100\% digital loop control
Current loop: $16 \mathrm{kHz}(62.5 \mu \mathrm{~s})$, Velocity \& position loops: $4 \mathrm{kHz}(250 \mu \mathrm{~s})$
Changes in bus or mains voltage do not affect bandwidth
$200 \mu \mathrm{H}$ line-line

COMMAND INPUTS (NOTE: DIGITAL INPUT FUNCTIONS ARE PROGRAMMABLE)

Distributed Control Modes
CANopen
Stand-alone mode
Analog position, velocity/torque(servo mode)
Digital position reference
Digital torque \& velocity reference (servo mode)

Profile Position, Profile Velocity-torque (servo mode), Interpolated Position, Homing
$\pm 10 \mathrm{Vdc}, 12$-bit resolution
Pulse/Direction, CW/CCW
Quad A/B Encoder
PWM , Polarity
PWM 50\%
PWM frequency range
PWM minimum pulse width

Dedicated differential analog input Stepper commands ( 2 MHz maximum rate) 2 M line/sec, 8 Mcount/sec (after quadrature)
PWM $=0 \%-100 \%$, Polarity $=1 / 0$
$P W M=50 \% \pm 50 \%$, no polarity signal required
1 kHz minimum, 100 kHz maximum
220 ns
Up to 32 sequences can be launched from inputs or ASCII commands.
Up to 10 CAM tables can be stored in flash memory
RS-232, DTE, $9600 \sim 115,200$ Baud, 3-wire, RJ-11 connector

## DIGITAL INPUTS

Number 24
[IN1,2,10,11]
[IN19~21,22~24]
[IN3,4,12,13]
[IN5~8,14~17]
[IN9,18]
Digital, non-isolated, Schmitt trigger, $1.5 \mu \mathrm{~s}$ RC filter, 24 Vdc compatible, programmable 15 k pull-up/down to $+5 \mathrm{Vdc} /$ ground, $\mathrm{Vt}+=2.5 \sim 3.5 \mathrm{Vdc}, \mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}, \mathrm{VH}=0.7 \sim 1.5 \mathrm{Vdc}$
Digital, non-isolated, Schmitt trigger, $1.5 \mu \mathrm{~s}$ RC filter, 24 Vdc compatible, 15 k pull-up to $+5 \mathrm{Vdc} / \mathrm{ground}$, $\mathrm{Vt}+=2.5 \sim 3.5 \mathrm{Vdc}, \mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}, \mathrm{VH}=0.7 \sim 1.5 \mathrm{Vdc}$
Digital, non-isolated, programmable as single-ended or differential pairs, 100 ns RC filter, 12 Vdc max, programmable pull-up/down per input to $+5 \mathrm{Vdc} /$ ground,
SE: Vin-LO $\leq 2.3 \mathrm{Vdc}, \mathrm{Vin}-\mathrm{HI} \geq 2.7 \mathrm{Vdc}, \mathrm{VH}=45 \mathrm{mV}$ typ, DIFF: Vin-LO $\leq 200 \mathrm{mVdc}$, Vin-HI $\geq 200 \mathrm{mVdc}, \mathrm{VH}=45 \mathrm{mV}$ typ
Digital, opto-isolated, single-ended, $\pm 15 \sim 30$ Vdc compatible, bi-polar, 2 groups of 4, each with a common terminal
Rated impulse $\geq 800 \mathrm{~V}$, Vin-LO $\leq 6.0 \mathrm{Vdc}$, Vin-HI $\geq 10.0 \mathrm{Vdc}$, Input current $\pm 3.6 \mathrm{~mA} @ \pm 24 \mathrm{Vdc}$, typical
Default as motor overtemp inputs on feedback connectors, 12 Vdc max, programmable to other functions
Other digital inputs are also programmable for the Motemp function
$330 \mu \mathrm{~s} \mathrm{RC}$ filter, 4.99 k pullup to $+5 \mathrm{Vdc}, \mathrm{Vt}+=2.5 \sim 3.5 \mathrm{Vdc}, \mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}, \mathrm{VH}=0.7 \sim 1.5 \mathrm{Vdc}$
Functions All inputs are programmable, [IN1 \& IN10] default to drive axes A \& B Enable function and are programmable

ANALOG INPUTS
Number
[AIN1~2]
SAFE TORQUE OFF (STO)
Function
Standard
Safety Integrity Level
Inputs
Type
2
Differential, $\pm 10 \mathrm{Vdc}, 5 \mathrm{k} \Omega$ input impedance, 12 -bit resolution
PWM outputs active and current to the motor will not be possible when the STO function is asserted
Designed to IEC-61508-1, IEC-61508-2, IEC-61800-5-2, ISO-13849-1
SIL 3, Category 3, Performance level d
2 two-terminal: STO_IN1+,STO_IN1-, STO_IN2+, STO_IN2-
Opto-isolators, 24 V compatible, Vin -LO $\leq 6.0 \mathrm{Vdc}$ or open, $\mathrm{Vin}-\mathrm{HI} \geq 15.0 \mathrm{Vdc}$,
STO_IN1: 9.0 mA, STO_IN2: 4.5 mA
2 ms (IN1, IN2) from Vin $\leq 6.0 \mathrm{Vdc}$ to interruption of energy supplied to motor
Complete information and specifications are in the Accelnet \& Stepnet Plus Panels STO Manual
$\frac{\text { Reference }}{\text { DIGITAL OUTPUTS }}$

Number
$\begin{array}{ll}\text { Number } & 7 \\ \text { [OUT1~5] } & \text { Op }\end{array}$
[OUT1~5]
[OUT6~7]
Opto-isolated SSR, two-terminal, 300 mA max, 24 V tolerant, Rated impulse $\geq 800 \mathrm{~V}$, series $1 \Omega$ resistor
Opto-isolated MOSFET, default as motor brake control, current-sinking,
1 Adc max, flyback diodes to +24 V external power supply for driving inductive loads
Programmable for other functions if not used for brake

## RS-232 PORT

Signals
Mode
Protocol
CAN PORT
Signals
Format
Data
Node-ID selection

RxD, TxD, Gnd in 6-position, 4-contact RJ-11 style modular connector, non-isolated, common to Signal Ground
Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 115,200 Baud
Binary and ASCII formats
CANH, CANL, CAN_GND in 8-position dual RJ-45 style modular connector, wired as per CAN Cia DR-303-1, V1.1
CAN V2.0b physical layer for high-speed connections compliant
CANopen Device Profile DSP-402
16 position rotary switches on front panel with 3 additional Node-ID bits available as
digital inputs or programmable to flash memory (7-bit addressing, 127 nodes per CAN network)

NOTES:

1) Heatsink or forced-air required for continuous current rating

## GENERAL SPECIFICATIONS

## DC POWER OUTPUTS <br> Number: Ratings

2: +5 Vdc, 500 mA max each output, thermal and short-circuit protected
Connections Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA
INDICATORS

## AMP

Bicolor LED, drive state indicated by color, and blinking or non-blinking condition
RUN
Green LED, status of CANopen finite-state-automaton (FSA)
ERR
Red LED, shows errors due to time-outs, unsolicited state changes, or local errors
Green LED, Link/Act, shows the state of the physical link and activity on the link (CANopen connection)
RUN, ERR, and L/A LED colors and blink codes conform to ETG.1300 S(R) V1.1.0

## PROTECTIONS

HV Overvoltage
HV Undervoltage
Drive over temperature
Short circuits
$\mathrm{I}^{2} \mathrm{~T}$ Current limiting
Motor over temperature
Feedback Loss
MECHANICAL \& ENVIRONMENTAL
Size IN [MM]
Weight LB[KG]
Ambient temperature
Humidity
Vibration
Shock
Contaminants
Environment
Cooling
$+\mathrm{HV}>90 \mathrm{Vdc} \quad$ Drive outputs turn off until $+\mathrm{HV}<90 \mathrm{Vdc}$ (See Input Power for $\mathrm{HV}_{\text {max }}$ )

+ HV $<+14 \mathrm{Vdc} \quad$ Drive outputs turn off until $+\mathrm{HV}>+14 \mathrm{Vdc}$
Heat plate $>70^{\circ} \mathrm{C}$. Drive outputs turn off
Output to output, output to ground, internal PWM bridge faults
Programmable: continuous current, peak current, peak time
Digital inputs programmable to detect motor temperature switch
Inadequate analog encoder amplitude or missing incremental encoder signals
$6.78 \times 4.70 \times 1.99[172.1 \times 119.3 \times 50.4]$ without heatsink
$6.78 \times 4.70 \times 3.14$ [172.1 $\times 119.3 \times 79.9]$ with heatsink
1.5 [0.68] without heatsink, 2.75 [1.25] with heatsink

0 to +45 C operating, -40 to +85 C storage
0 to 95\%, non-condensing
2 g peak, $10 \sim 500 \mathrm{~Hz}$ (sine), IEC60068-2-6
$10 \mathrm{~g}, 10 \mathrm{~ms}$, half-sine pulse, IEC60068-2-27
Pollution degree 2
IEC68-2: 1990
Heat sink and/or forced air cooling required for continuous power output

AGENCY STANDARDS CONFORMANCE ()
Approvals
UL and cUL recognized component to UL 61800-5-1 (file no. E168959)
TÜV SÜD Functional Safety to IEC 61508 and ISO 13849

## Functional Safety

IEC 61508-1, IEC 61508-2, EN (ISO ) 13849-1, EN (ISO) 13849-2, IEC 61800-5-2
(see The Stepnet \& Stepnet Plus Panels STO Manual for further detail)
Electrical Safety
Directive 2006/95/EC - Low Voltage: IEC 61800-5-1:2007
UL 61800-5-1-2012
EMC
Directive 2004/108/EC - EMC:
IEC 61800-3:2004+A1:2011
$\triangle$ SICE mans
Hazardous Substances
Directive 2011/65/EU (RoHS Directive)

## GENERAL SPECIFICATIONS

## FEEDBACK

Incremental:
Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential ( $X$, /X Index signals not required)
5 MHz maximum line frequency ( 20 M counts/sec)
MAX3097 differential line receiver with $121 \Omega$ terminating resistor between $A \& / A, B \& / B$ inputs
$X \& / X$ inputs have $130 \Omega$ terminating resistor, $S \& / S$ inputs have $221 \Omega$ terminating resistor
Absolute:
EnDat
Absolute A
Serial data and clock signals (DATA, /DATA, CLK, /CLK), differential, $121 \Omega$ inputs
Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A
SD+, SD- (S, /S) signals, 2.5 or $4 \mathrm{MHz}, 2$-wire half-duplex communication
Status data for encoder operating conditions and errors
MULTI-MODE ENCODER PORT As Input

Digital quadrature encoder ( $\mathrm{A}, / \mathrm{A}, \mathrm{B}, / \mathrm{B}, \mathrm{X}, / \mathrm{X}$ ), 5 MHz maximum line frequency ( 20 M counts/sec), MAX3097 line receiver, $1.5 \mathrm{k} \Omega$ pull-ups to +5 V on $\mathrm{X} \& \mathrm{~S}$ inputs, $1.5 \mathrm{k} \Omega$ pull-downs to $\operatorname{Sgnd}$ on $/ \mathrm{X} \& / \mathrm{S}$ inputs Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation,

As Emulated Output S \& X inputs are used for absolute encoder interface
Quadrature encoder emulation with programmable resolution to 4096 lines ( 65,536 counts) per rev from absolute encoders
A, /A, B, /B, from MAX3032 differential line driver, X, /X, S, /S from MAX3362 differential line driver
As Buffered Output
Digital $A / B / X$ encoder feedback signals from primary quad encoder are buffered (see line drives above)

## CANOPEN COMMUNICATIONS

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination

## CANOPEN CONNECTIONS

Stepnet Plus uses the CAN physical layer signals CAN_H, CAN_L, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN
of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN LEDS (ON RJ-45 CONNECTORS)
RUN Green: Shows the state of the FSA (Finite State Automaton)

| Off | $=$ Init |
| :--- | :--- |
| Blinking | $=$ Pre-operational |
| Single-flash | $=$ Safe-operational |
| On | $=$ Operational |

ERR Red: Shows errors such as watchdog timeouts and unsolicited state changes in the TP2 due to local errors.
Off $\quad=$ CANopen communications are working correctly
Blinking $=$ Invalid configuration, general configuration error
Single Flash = Local error, slave has changed CANopen state autonomously
Double Flash $=$ PDO or CANopen watchdog timeout,or an application watchdog timeout has occurred
L/A Green: Shows the state of the physical link and activity on the link.
A green LED indicates the state of the CANopen network:

| LED | Link | Activity | Condition |
| :--- | :--- | :--- | :--- |
| ON | Yes | No | Port Open |
| Flickering | Yes | Yes | Port Open with activity |
| Off | No | (N/A) | Port Closed |

## CANopen DEVICE ID (NETWORK ADDRESS)

In a CANopen network, nodes are assigned Node-IDs 1~127. Node-ID 0 is reserved for the CAN bus master. In the TP2, the node address is provided by two 16 -position rotary switches with hexadecimal encoding. These can set the address of the drive A-axis from $0 \times 01 \sim 0 \times 7 E(1 \sim 126$ decimal). The B-axis will have an address of the A-axis +1 . The chart shows the decimal values of the hex settings of each switch. In the TP2, this is provided by two 16 -position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from $0 \times 00 \sim 0 \times F F$ ( $0 \sim 255$ decimal). The chart shows the decimal values of the hex settings of each switch.
Example 1: Find the switch settings for decimal Device ID 107:

1) Find the highest number in the $x 10$ column that is less than 107 and set $x 10$ to the hex value in the same row:
$96<107$ and $112>107$, so $\times 10=96=$ Hex 6
2) Subtract 96 from the desired Device ID to get the decimal value for the switch $x 1$ and set it to the Hex value in the same row:
$\mathrm{x} 1=(107-96)=11=\operatorname{Hex} \mathrm{B}$
3) Result: $\mathrm{X} 10=6, \mathrm{X} 1=\mathrm{B}$, Alias $=0 \times 6 \mathrm{~B}$ (107)


| PIN | SIGNAL |
| :---: | :---: |
| 8 | CAN_V+ |
| 7 | GND |
| 6 | CAN_SHLD |
| 5 | THRU |
| 4 | THRU |
| 3 | CAN_GND |
| 2 | CAN_L |
| 1 | CAN_H |

network, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus.


J3: CANopen PORTS
RJ-45 receptacles,
8 position, 4 contact

## INDICATORS: DRIVE STATE

Two bi-color LEDs give the state of the TP2 drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed.
When that condition is cleared the next one below will shown.

1) Red/Blinking = Latching fault. Operation will not resume until drive is Reset.
2) Red/Solid
3) Green/Double-Blinking
4) Green/Slow-Blinking
5) Green/Fast-Blinking
6) Green/Solid

Latching Faults
Defaults
$=$ Transient fault condition. Drive will resume operation wheset.
$=$ Transient fault condition. Drive will resume operation when the condition causing the fault is removed.
= STO circuit active, drive outputs are Safe-Torque-Off
= Drive OK but NOT-enabled. Will run when enabled.
$=$ Positive or Negative limit switch active.
Drive will only move in direction not inhibited by limit switch.
= Drive OK and enabled. Will run in response to reference inputs or CANopen commands.

- Short circuit (Internal or external)
- Drive over-temperature
- Motor over-temperature
- Feedback Error
- Following Error

Optional (programmable)

- Over-voltage
- Under-voltage
- Motor Phasing Error
- Command Input Fault


## AMP LEDS \& DEVICE ID SWITCHES

CANopen Device ID Switch Decimal values

| Set | x10 | x1 |
| :---: | :---: | :---: |
| Hex | Dec |  |
| 0 | 0 | 0 |
| 1 | 16 | 1 |
| 2 | 32 | 2 |
| 3 | 48 | 3 |
| 4 | 64 | 4 |
| 5 | 80 | 5 |
| 6 | 96 | 6 |
| 7 | 112 | 7 |


| Set | $x 10$ | $x 1$ |
| :---: | :---: | :---: |
| Hex | Dec |  |
| 8 | 128 | 8 |
| 9 | 144 | 9 |
| A | 160 | 10 |
| B | 176 | 11 |
| C | 192 | 12 |
| D | 208 | 13 |
| E | 224 | 14 |
| F | 240 | 15 |

## COMMUNICATIONS: RS-232 SERIAL

TP2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the TP2 RS-232 port are through J'4, an RJ-11 connector. The TP2 Serial Cable Kit (SERCK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

## SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the TP2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the TP2. The connections are shown in the diagram TP2ow.

J4: RS-232 PORT
RJ-11 receptacle, 6 position, 4 contact


| PIN | SIGNAL |
| :---: | :---: |
| 2 | RxD |
| 3,4 | Gnd |
| 5 | Txd |



Don't forget to order a Serial Cable Kit SER-CK when placing your order for a TP2!

USB TO RS-232 ADAPTERS
These may or may not have the speed to work at the 115,200 Baud rate which gives the best results with CME2. Users have reported that adapters using the FTDI chipset work well with CME2

## ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Stepnet, Stepnet, and TP2 series amplifiers over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).
ASCII parameter $0 \times 90$ holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:
s r0x90 115200 <enter>
Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.
Additional information can be found in the ASCII Programmers Guide on the Copley website:
http://www.copleycontrols.com/Motion/pdf/ASCII ProgrammersGuide.pdf

## SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

|  | Refer to the Accelnet \& Stepnet Plus Panels STO Manual |
| :--- | :--- |
|  | The information provided in the Accelnet \& Stepnet Plus Panels STO Manual must be considered for <br> any application using the TP2 drive's STO feature. <br> FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH. | any application using the TP2 drive's STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

## STO BYPASS (MUTING)

In order for the PWM outputs of the TP2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

This diagram shows connections that will energize all of the optocouplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.
If not using the STO feature, these connections must be made in order for the TP2 to be enabled.

## STO BYPASS CONNECTIONS

FUNCTIONAL DIAGRAM


Current must flow through all of the opto-couplers before the drive can be enabled

* STO bypass connections on the TP2 and Xenus XEL-XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the TP2 and can be replaced by a wire between pins 7 and 9 .

Bypass Plug Connections
Jumper pins:
2-4, 3-5, 6-8, 7-9 *


Accelnet Plus Panel Dual-Axis Accelnet Plus Panel D
16





## DIGITAL COMMAND INPUTS: POSITION

## POSITION COMMAND INPUTS

Single-ended digital position commands must be sourced from devices with active pull-up and pull-down to take advantage of
the high-speed inputs.

DIFFERENTIAL PULSE \& DIRECTION


DIFFERENTIAL CU/CD
SINGLE-ENDED CU/CD


QUAD A/B ENCODER SINGLE-ENDED


SINGLE-ENDED PULSE \& DIRECTION


QUAD A/B ENCODER DIFFERENTIAL

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

| Signal | Axis A | Axis B |
| :--- | :---: | :---: |
| [Enc A] Pls, CU, Enc A | J1-36 | J1-42 |
| [Enc /A] /Pls, /CU, Enc /A | J1-21 | J1-27 |
| [Enc B] Dir, CD, Enc B | J1-35 | J1-41 |
| [Enc /B] /Dir, /CD, Enc /B | $J 1-20$ | J1-26 |
| Signal Ground | $31-6,22,31$   <br> Frame Ground J1-1  |  |

For differential commands, the $A \& B$ channels of the multi-mode encoder ports are used.

## DIGITAL COMMAND INPUTS: VELOCITY, TOROUE

Single-ended digital torque or velocity commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.
SINGLE-ENDED PWM \& DIRECTION


SINGLE-ENDED 50\% PWM


DIFFERENTIAL PWM \& DIRECTION


SINGLE-ENDED: IN3, 4, 12, 13

| Signal | Axis A | Axis B |
| :--- | :---: | :---: |
| [IN3(12)] Curr-Vel $\pm$ | J1-9 | J1-14 |
| [IN4(13)] / Curr-Vel士 | J1-10 | J1-15 |
| Signal Ground | J1-6,16,22,31, <br> 37,44 |  |
| Frame Ground | J1-1 |  |

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

| Signal | Axis A | Axis B |
| :--- | :---: | :---: |
| [Enc A] Curr-Vel $\pm$ | $J 1-36$ | $J 1-42$ |
| [Enc /A] /Curr-Vel $\pm$ | $J 1-21$ | $J 1-27$ |
| [Enc B] Pol-Dir | $J 1-35$ | $J 1-41$ |
| [Enc /B] /Pol-Dir | $J 1-20$ | $J 1-26$ |
| Signal Ground | $31-6,16,22,31$  <br> 37,44  |  |
| Frame Ground | $J 1-1$ |  |

## MULTI-MODE PORT AS AN INPUT

## INPUT TYPES

## POSITION COMMAND INPUTS: DIFFERENTIAL

- Pulse \& Direction
- CW \& CCW (Clockwise \& Counter-Clockwise)
- Encoder Quad A \& B
- Camming Encoder A \& B input


CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current or Velocity \& Direction
- Current or Velocity (+) \& Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL

- Quad A/B/X incremental encoder


SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire)

The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.

- S \& X channels: SSI, BiSS, EnDat encoders (4-wire) The $X$ channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S -channel in full-duplex mode



## MULTI-MODE PORT AS AN OUTPUT

## OUTPUT TYPES

## BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad $A / B / X$ encoder feedback and differential line drivers for $A / B / X$ outputs

EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL
Firmware produces emulated quad $A / B$ signals from feedback data from the following devices:

- Absolute encoders

SIGNALS \& PINS

| Signal | Axis A <br> J1 | Axis B <br> J1 |
| :--- | :---: | :---: |
| Encoder A | 36 | 42 |
| Encoder /A | 21 | 27 |
| Encoder B | 35 | 41 |
| Encoder /B | 20 | 26 |
| Encoder X | 34 | 40 |
| Encoder /X | 19 | 25 |
| Encoder S | 33 | 39 |
| Encoder /S | 18 | 24 |
| Signal Ground | $6,16,22,31,37,44$ |  |
| Frame Ground | 1 |  |

## Secondary

Encoder Input


J1 Multi-Port


## CME2 DEFAULTS

These tables show the CME2 default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

## Input/Output

| Digital Inputs 1-9 | Digital Inputs 10-18 | Digital Inputs 19-24 |
| :--- | :--- | :--- |


| Axis A | Config | PU/PD | Axis B | Config | PU/PD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 | Enable-LO |  | *IN10 | Enable-LO |  |
| IN2 |  | +5V | *IN11 |  | +5V |
| IN3 | Not <br> Configured | Sgnd | *IN12 | Not <br> Configured | Sgnd |
| IN4 |  |  | *IN13 |  |  |
| IN5 | Opto <br> Not Configured |  | IN14 | Opto <br> Not Configured |  |
| IN6 |  |  | IN15 |  |  |
| IN7 |  |  | IN16 |  |  |
| IN8 |  |  | IN17 |  |  |
| IN9 | Motemp | +5V | IN18 | Motemp | +5V |
| IN19 | J7-2 |  | IN22 | J8-2 |  |
| IN20 | J7-3 |  | IN23 | J8-3 |  |
| IN21 | J7-4 |  | IN24 | J8-4 |  |



| Axis A | Axis B | Notes |
| :---: | :---: | :--- |
| $\checkmark$ | $\sqrt{2}$ | Short Circuit |
| $\checkmark$ | $\checkmark$ | Amp Over Temp |
| $\checkmark$ | $\sqrt{ }$ | Motor Over Temp |
|  |  | Over Voltage |
|  |  | Under Voltage |
|  |  | Motor Wiring <br> Disconnected |

OPTIONAL FAULTS

|  |  | Over Current (Latched) |
| :--- | :--- | :--- |

## Home

| Axes A, B | Notes |
| :--- | :--- |
| Method | Set Current Position as Home |

## HIGH SPEED INPUTS: IN1, IN2, IN10, IN11, IN19, IN20, IN21, IN22, IN23, IN24

- Digital, non-isolated, high-speed
- Programmable pull-up/pull-down: IN1, IN2, IN10, IN11

Fixed pull-up to +5V: IN19, IN20, IN21, IN22, IN23, IN24

- 24V Compatible
- Programmable functions

SPECIFICATIONS

| Input | Data | Notes |
| :--- | :---: | :--- |
| Input Voltages | HI | $\mathrm{VT}+=2.5 \sim 3.5 \mathrm{Vdc}$ |
|  | LO | $\mathrm{VT}-=1.3 \sim 2.2 \mathrm{Vdc}$ |
|  | $\mathrm{VH}^{1}$ | $\mathrm{VH}= \pm 0.7 \sim 1.5 \mathrm{Vdc}$ |
|  | Max | +30 Vdc |
|  | Min | 0 Vdc |
| Pull-up/down | R 1 | $15 \mathrm{k} \Omega$ |
| Low pass filter | R 2 | $15 \mathrm{k} \Omega$ |
|  | C 1 | 100 pF |
| Input Current | 24 V | 1.3 mAdc |
|  | OV | -0.33 mAdc |
|  | $\mathrm{RC}^{2}$ | $1.5 \mu \mathrm{~s}$ |

## CONNECTIONS

| Input | Pin |
| :---: | :---: |
| IN1 | J1-7 |
| IN2 | J1-8 |
| IN10 | J1-12 |
| IN11 | J1-13 |
|  |  |
|  | J1: |
| Sgnd | 6,16, |
|  | 22,31, |
|  | 37,44 |


| Input | Pin |
| :---: | :---: |
| IN19 | J7-2 |
| IN20 | J7-3 |
| IN21 | J7-4 |
| IN22 | J8-2 |
| IN23 | J8-3 |
| IN24 | J8-4 |
| Sgnd | J7, J8: <br> 5,16, <br> 25,26 |

FEEDBACK CONNECTOR

Notes:

1) VH is hysteresis voltage (VT+) - (VT-)
2) The R2*C2 time constant applies when input is driven by active $\mathrm{HI} / \mathrm{LO}$ devices

## SINGLE-ENDED/DIFFERENTIAL INPUTS: IN3, IN4, IN12, IN13

- Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 12 V Compatible
- Single-ended or Differential
- Programmable functions

SPECIFICATIONS

| Input | Data | Notes |
| :--- | :---: | :--- |
| Input Voltages <br> Single-ended | HI | $\mathrm{Vin} \geq 2.7 \mathrm{Vdc}$ |
|  | LO | $\mathrm{Vin} \leq 2.3 \mathrm{Vdc}$ |
|  | $\mathrm{VH}^{1}$ | 45 mVdc typ |
| Input Voltages <br> Differential | HI | Vdiff $\geq+200 \mathrm{mVdc}$ |
|  | LO | $\mathrm{Vdiff} \leq-200 \mathrm{mVdc}$ |
|  | VH | $\pm 45 \mathrm{mVdc}$ typ |
| Common mode | Vcm | 0 to +12 Vdc |
| Pull-up/down | R 1 | $10 \mathrm{k} \Omega$ |
| Low pass filter | R 2 | $1 \mathrm{k} \Omega$ |
|  | C 1 | 100 pF |
| Time constant | $\mathrm{RC}{ }^{2}$ | 100 ns |

CONNECTIONS
Notes:

1) VH is hysteresis voltage IN2 - IN3 or IN12 - IN13
2) The R2*C2 time constant applies when input is driven by active HI/LO devices)
3) $\operatorname{Vdiff}=\operatorname{AINn}(+)-\operatorname{AINn}(-)$
$n=1$ for Axis $A, 2$ for Axis $B$

| S.E. | DIFF | Pin |
| :---: | :---: | :---: |
| IN3 | IN3+ | $J 1-9$ |
| IN4 | IN3- | $J 1-10$ |
| IN12 | IN12+ | $J 1-14$ |
| IN13 | IN12- | $J 1-15$ |
| Sgnd |  | $J 1-6,16,22,31,37,44$ |

SINGLE-ENDED


DIFFERENTIAL


## MOTOR OVERTEMP INPUTS: IN9, IN18

- Digital, non-isolated
- Motor overtemp inputs
- 12V Compatible
- Programmable functions


## SPECIFICATIONS

| Input | Data | Notes |
| :--- | :---: | :--- |
| Input Voltages | HI | Vin $\geq 3.5 \mathrm{Vdc}$ |
|  | LO | Vin $\leq 0.7 \mathrm{Vdc}$ |
|  | Max | +12 Vdc |
|  | Min | 0 Vdc |
| Pull-up/down | R 1 | $4.99 \mathrm{k} \Omega$ |
| Input Current | 12 V | 1.4 mAdc |
|  | OV | -1.0 mAdc |
| Low pass filter | R 2 | $10 \mathrm{k} \Omega$ |
|  | C 1 | 33 nF |
|  | Te | $330 \mu \mathrm{~s} *$ |

* RC time constant applies when inputs are driven by active high/low devices

CONNECTIONS

| Input | Pin |
| :---: | :---: |
| IN9 | $J 7-7$ |
| IN18 | J8-7 |
| Sgnd | $37,8-5,16,25,26$ |

## MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999: Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.


BS 4999:PART 111:1987

| Property | Ohms |
| :--- | :---: |
| Resistance in the temperature <br> range $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $60 \sim 750$ |
| Resistance at $85^{\circ} \mathrm{C}$ | $\leq 1650$ |
| Resistance at $95^{\circ} \mathrm{C}$ | $\geq 3990$ |
| Resistance at $105^{\circ} \mathrm{C}$ | $\geq 12000$ |

## OPTO-ISOLATED INPUTS: IN5, IN6, IN7, IN8, IN14, IN15, IN16, IN17

- Digital, opto-isolated
- 2 Groups of four, each with own Common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- Programmable functions

| SPECIFICATIONS |  |  |
| :--- | :---: | :--- |
| Input | Data | Notes |
| Input Voltages | HI | $\mathrm{Vin} \geq \pm 10.0 \mathrm{Vdc} *$ |
|  | LO | $\mathrm{Vin} \leq \pm 6 \mathrm{Vdc} *$ |
|  | Max | $\pm 30 \mathrm{Vdc} *$ |
| Input Current | $\pm 24 \mathrm{~V}$ | $\pm 3.6 \mathrm{mAdc}$ |
|  | OV | 0 mAdc |

* Vdc Referenced to ICOM terminals.

| CONNECTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| Signal | Pins | Signal | Pins |
| IN5 | J2-2 | IN14 | J2-7 |
| IN6 | J2-3 | IN15 | J2-8 |
| IN7 | J2-4 | IN16 | J2-9 |
| IN8 | J2-5 | IN17 | J2-18 |
| ICOM1 | J2-6 | ICOM2 | J2-17 |



## ANALOG INPUTS: AIN1, ATN2

- $\pm 10 \mathrm{Vdc}$, differential
- 12-bit resolution
- Programmable functions

The analog inputs have a $\pm 10 \mathrm{Vdc}$ range at 12 -bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

## SPECIFICATIONS

| Spec | Data | Notes |
| :--- | :---: | :--- |
| Input Voltage | Vref | $\pm 10 \mathrm{Vdc}$ |
| Input Resistance | Rin | $5.05 \mathrm{k} \Omega$ |

CONNECTIONS

| Signal | Pins |  |
| :---: | :---: | :---: |
|  | Axis A | Axis B |
| AIN(+) | J1-3 | J1-5 |
| AIN(-) | J1-2 | J1-4 |
| Sgnd | J1-6, 16, 22, 31, 37, 44 |  |



## OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3, OUT4, OUT5

- Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- Flyback diodes for inductive loads
- 24V Compatible
- Programmable functions


## SPECIFICATIONS

| Output | Data | Notes |
| :--- | :---: | :--- |
| ON Voltage <br> OUT( + ) - OUT(-) | Vdc | 0.85 V @ 300 mAdc |
| Output Current | Iout | 300 mAdc max |

CONNECTIONS

| Signal | $(+)$ | $(-)$ |
| :---: | :---: | :---: |
| OUT1 | J2-19 | J2-10 |
| OUT2 | J2-20 | J2-11 |
| OUT3 | J2-21 | J2-12 |
| OUT4 | J2-22 | J2-13 |
| OUT5 | J2-23 | J2-14 |



HI/LO DEFINITIONS: OUTPUTS

| Input | State | Condition |
| :--- | :---: | :--- |
| OUT1~5 | HI | Output SSR is ON, current flows |
|  | LO | Output SSR is OFF, no current flows |

## OPTO-ISOLATED MOTOR BRAKE OUTPUTS: OUT6, OUT7

- Brake outputs
- Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24 V power supply
- Programmable functions


## SPECIFICATIONS

| Output | Data | Notes |
| :--- | :---: | :--- |
| Voltage Range | Max | +30 Vdc |
| Output Current | Ids | 1.0 Adc |

HI/LO DEFINITIONS: OUTPUTS

| Input | State | Condition |
| :--- | :---: | :--- |
| BRK-A,B <br> OUT6,7 | HI | Output transistor is OFF <br> Brake is un-powered and locks motor <br> Motor cannot move <br> Brake state is Active |
|  | LO | Output transistor is ON <br> Brake is powered, releasing motor <br> Motor is free to move <br> Brake state is NOT-Active |

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI"
Active $=$ Brake is holding motor shaft (i.e. the Brake is Active) Motor cannot move
No current flows in coil of brake
CME2 I/O Line States shows Output 6 or 7 as HI
BRK Output voltage is $\mathrm{HI}(24 \mathrm{~V})$, MOSFET is OFF
Stepper drive output current is zero
Stepper drive is disabled, PWM outputs are off
Inactive $=\quad$ Brake is not holding motor shaft (i.e. the Brake is Inactive)

Motor can move
Current flows in coil of brake CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO ( $\sim 0 \mathrm{~V}$ ), MOSFET is ON Stepper drive is enabled, PWM outputs are on Stepper drive output current is flowing



The brake circuits are optically isolated from all drive circuits and frame ground.

CONNECTIONS

| Pin | Signal |
| :---: | :--- |
| 5 | Brk 24V Input |
| 4 | Brk 24V Output |
| 3 | Brake A [OUT6] |
| 2 | Brake B [OUT7] |
| 1 | 24V Return |

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

## FEEDBACK CONNECTIONS

QUAD A/B/X ENCODER WITH SIGNAL LOSS DETECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal ( $X$ )
gives a once per revolution position mark.
The MAX3097 receiver has differential inputs with fault protections for the following conditions:

## Condition

Line-line shorts
Open-circuits:
Low-voltage

## Example

A shorted to /A
A disconnected, /A connected. Terminator resistor pulls A \& /A together for a short-circuit fault
$\mathrm{Va}-\mathrm{Vb} \leq 200 \mathrm{mV}$, or $\geq-200 \mathrm{mV}$
Encoder power loss, cabling, etc.

SIGNAL LOSS DETECTION LOGIC

A/B/X SIGNALS

| Signal | J7,J8 Pin |
| :---: | :---: |
| Enc A | 13 |
| Enc $/ A$ | 12 |
| Enc B | 11 |
| Enc $/ B$ | 10 |
| Enc $X$ | 9 |
| Enc $/ X$ | 8 |
| $+5 V$ | 6,17 |
| Sgnd | $5,16,25,26$ |
| F.G. | 1 |

Sgnd = Signal Ground F.G. = Frame Gnd


## CME2 FEEDBACK OPTIONS



## MULTI-PORT FEEDBACK CONNECTIONS

## DUAL-LOOP FEEDBACK

Incremental or absolute encoders can connect to the Multi-port to function as secondary feedback for dual-loop operation. Typically, the primary encoder $(J 7, J 8)$ is mounted on the motor, and the secondary encoder (J1) mounts to the load. The primary encoder is used for velocity feedback and the secondary one us used for the actual load position. The graphic shows both incremental and absolute connections. Only one encoder per axis can connect to the multi-port for dual-loop opertion.

## MULTI-PORT J1 SIGNALS

| Signal | Axis A | Axis B |
| :---: | :---: | :---: |
| Enc A | 36 | 42 |
| Enc /A | 21 | 27 |
| Enc B | 35 | 41 |
| Enc /B | 20 | 26 |
| Enc X | 34 | 40 |
| Enc /X | 19 | 25 |
| Enc S | 33 | 39 |
| Enc /S | 18 | 24 |
| +5V | 32 | 23 |
| Sgnd | 31 | 22 |
| F.G. |  |  |

Stepnet Plus Panel 2-Axis


## FEEDBACK CONNECTIONS

## ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that has Clock and Data signals. The number of position data bits is programmable.


## ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.


## MOTOR CONNECTIONS

## MOTOR PHASE CONNECTIONS

The drive outputs are three-phase PWM inverters that convert the DC buss voltage ( +HV ) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame

MOTOR SIGNALS

| Signal | J9,J10 Pin |
| :---: | :---: |
| Mot A | 5 |
| Mot /A | 4 |
| Mot B | 3 |
| Mot /B | 2 |
| Frame Gnd | 1 |



## MOTOR OVER TEMP INPUT

The 4.99 k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table TP2ow), or switches that open/close indicating a motor over-temperature condition. The active level is programmable. These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.


MOTEMP SIGNALS

| Signal | Pin |
| :---: | :---: |
| Motemp A | $\mathrm{J7-7}$ |
| Motemp B | $\mathrm{J8-7}$ |
| $\mathrm{J7,J8}$ <br> Signal Ground | 5,10 |
| Frame Gnd | 12 |

BS 4999 SENSOR

| Property | Ohms |
| :--- | :---: |
| Resistance in the temperature range <br> $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $60 \sim 750$ |
| Resistance at $85^{\circ} \mathrm{C}$ | $\leq 1650$ |
| Resistance at $95^{\circ} \mathrm{C}$ | $\geq 3990$ |
| Resistance at $105^{\circ} \mathrm{C}$ | $\geq 12000$ |

## MOTOR CONNECTIONS: ENCODER

The connections shown may not be used in all installations
Stepnet Plus Panel 2-Axis


NOTES:

1) The +5VOut1 on J1-17,32 and J7-6, 17 is rated for 500 mA

The +5 VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
These are two independent power supplies, each with a 500 mA max output from all pins
2) CE symbols indicate connections required for CE compliance.

## DEVICE STRUCTURE \& ISOLATION

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits. Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.


## POWER \& GROUNDING CONNECTIONS

## DC POWER CONNECTIONS

- DC power must be provided by transformers that are galvanically isolated and provide reinforced insulation from the mains. Auto-transformers cannot be used.
- The (-) terminal of the power supply is not grounded at the power supply. It is grounded near each drive.
- Cabling to multiple drives for the +HV and OV is best done in a "star" configuration, and not a "daisy-chain".
- The OV , or return terminal of the DC power should be connected to frame ground near the drive power connector. From that point, a short wire can connect to the drive HV Ground.
- Cabling to the drive +HV and OV terminals must be sized to carry the expected continuous current of the drive in the user's installation.
- DC power cabling should be shielded, twisted-pair for best EMI reduction. The shield should connect to the power supply frame ground on one end, and to the drive frame ground on the other. Adding a pigtail and ring-lug, as short as possible will provide a good connection of the shield at the drive.
- Motor cabling typically includes a green/yellow conductor for protective bonding of the motor frame. Connect as shown in the Motor Connections diagram on the following page.
- Motor cable conductors should be twisted and shielded for best EMI suppression.
- If a green/yellow grounding wire connects the motor to the drive's PE terminal, the shield pigtail and ring-lug may connect to one of the screws that mount the drive to the panel. A P-clip to ground the shield as near as possible to the drive will increase the EMI suppression of the shield. On the motor-end, the shield frequently connects to the connector shell. If the motor cable is a flyinglead from the motor, the shield may be connected to the motor frame internally.
- Braided cable shields are more effective for EMI reduction than foil shields. Double-shielded cables typically have a braided outer shield and foil shields for the internal twisted pairs. This combination is effective for both EMI reduction and signal quality of the feedback signals from analog encoders.
- Motor cable shielding is not intended to be a protective bonding conductor unless otherwise specified by the motor manufacturer.
- In double-shielded cables, the internal shielding should connect to the drive's Signal Ground on one end, and should be unconnected on the motor end.
- Single-shield feedback cables connect to the drive frame on one end, and to the motor frame on the other. Depending on the construction of the motor, leaving the feedback cable shield disconnected on the motor but connected on the drive end may give better results.
- The drive should be secured to the equipment frame or panels using the mounting slots. This ensures a good electrical connection for optimal EMI performance. The drive chassis is electrically conductive.

DC POWER WIRING
P-clips secure cables to a panel and provide full contact to the cable shields after the insulation has been stripped. This should be done as close to the drive as possible for best EMI attenuation.


## +HV POWER SUPPLY REQUIREMENTS

## Regulated Power Supplies

- Must be over-voltage protected to 100 Vdc max when the STO (Safe Torque Off) feature of the drive is used.
- Require a diode and external capacitor to absorb regenerative energy.
- The VA rating should be greater than the actual continuous output power of the drives connected to the power supply, and adequate for the transient output power due to acceleration of motor loads.
- Must handle the internal capacitance of the drives on startup.

Unregulated Power Supplies

- No-load, high-line output voltage must not exceed 90 Vdc .
- Power supply internal capacitance adds to the drive's internal capacitance for absorption of regenerative energy.
- The VA (Volts \& Amps) rating at the power supply's AC input is typically 30~40\% greater than the total output power of the drives.


## AUXILIARY HV POWER



- Aux HV is power that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply.
- Useful during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety.
- Voltage range is the same as +HV.
- Powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.
- Aux HV draws no current when the +HV voltage is greater than the Aux HV voltage.


## MOTOR CONNECTIONS

- Motor cable shield connects to motor frame, is grounded with a P-clip near the drive and terminates in a ring-lug that is screwed to the drive chassis by a mounting screw to the panel
- If provided, a green/yellow grounding wire from the motor connects to the F.G. terminal of the motor connector.


## FEEDBACK CONNECTIONS

- Cable shield connects to motor frame and to the F.G. terminal of the feedback connector.
- When double-shielding is used, the inner shields connect to the Signal Ground at the drive, and is not connected at the motor end.
- If not provided by the motor manufacturer, feedback cables rated for RS-422 communications are recommended for digital encoders.



## REGENERATION

This chart shows the energy absorption in W.s for the drive operating at some typical DC voltages. It is based on the internal 470 uF capacitor and would be increased by the capacitance of the external DC power supply. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required, or the DC power supply capacitance can be increased to absorb the regen energy.

ENERGY
ABSORPTION


## CONNECTORS \& SIGNALS: FRONT PANEL

## J6 SAFETY (SAFETORQUE OFF)

| PIN | SIGNAL | PIN | SIGNAL |
| :---: | :--- | :---: | :--- |
| 1 | Frame Gnd | 6 | STO-IN1+ |
| 2 | STO-IN1+ | 7 | STO-IN1- |
| 3 | STO-IN1- | 8 | STO-Bypass |
| 4 | STO-IN2+ | 9 | STO-Gnd |
| 5 | STO-IN2- |  |  |
|  |  |  |  |



J2: ISOLATED CONTROL

| PIN | SIGNAL |
| :---: | :--- |
| 9 | $[$ IN16] GPI |
| 8 | $[$ IN15] GPI |
| 7 | $[$ IN14] GPI |
| 6 | COM1 [IN5~8] |
| 5 | $[$ IN8] GPI |
| 4 | $[$ IN7] GPI |
| 3 | [IN6] GPI |
| 2 | $[$ IN5] GPI |
| 1 | Frame Ground |


| PIN | SIGNAL |
| :---: | :--- |
| 18 | [IN17] GPI |
| 17 | COM2 [IN14~17] |
| 16 | N/C |
| 15 | N/C |
| 14 | [OUT5-] GPI |
| 13 | [OUT4-] GPI |
| 12 | [OUT3-] GPI |
| 11 | [OUT2-] GPI |
| 10 | [OUT1-] GPI |


| PIN | SIGNAL |
| :---: | :--- |
| 26 | n.c. |
| 25 | n.c. |
| 24 | n.c. |
| 23 | $[$ OUT5+] GPI |
| 22 | $[$ OUT4+] GPI |
| 21 | $[$ OUT3+] GPI |
| 20 | $[$ OUT2+] GPI |
| 19 | $[$ OUT1+] GPI |

J2: TP2 CONNECTOR
High-Density Dsub DA-26M, male plug, 26 Position
J2: CABLE CONNECTOR
High-Density Dsub DA-26F, female receptacle, 26 Position
J1: CONTROL SIGNALS

| PIN | SIGNAL | PIN | SIGNAL | PIN | SIGNAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Frame Gnd | 16 | Signal Gnd | 31 | Signal Gnd |
| 2 | [AIN1-] | 17 | A +5 Vdc Out1 | 32 | A + 5Vdc Out1 |
| 3 | [AIN1+] | 18 | A-MultiEnc /S | 33 | A-MultiEnc S |
| 4 | [AIN2-] | 19 | A-MultiEnc /X | 34 | A-MultiEnc X |
| 5 | [AIN2+] | 20 | A-MultiEnc /B | 35 | A-MultiEnc B |
| 6 | Signal Gnd | 21 | A-MultiEnc /A | 36 | A-MultiEnc A |
| 7 | [IN1] | 22 | Signal Gnd | 37 | Signal Gnd |
| 8 | [IN2] | 23 | B + 5Vdc Out2 | 38 | B +5Vdc Out2 |
| 9 | [IN3] Diff1(+) | 24 | B-MultiEnc /S | 39 | B-MultiEnc S |
| 10 | [IN4] Diff1(-) | 25 | B-MultiEnc /X | 40 | B-MultiEnc X |
| 11 | N/C | 26 | B-MultiEnc /B | 41 | B-MultiEnc B |
| 12 | [IN10] | 27 | B-MultiEnc /A | 42 | B-MultiEnc A |
| 13 | [IN11] | 28 | N/C | 43 | N/C |
| 14 | [IN12] Diff2(+) | 29 | N/C | 44 | Signal Gnd |
| 15 | [IN13] Diff2(-) | 30 | N/C |  |  |

## J1: TP2 CONNECTOR

High-Density Dsub DB-44F, female receptacle, 44 Position
J2: CABLE CONNECTOR


J6 TP2 CONNECTOR:
Dsub DE-09F, 9 position female receptacle J6 CABLE CONNECTOR:
Dsub DE-09M, 9 position
Details on J1, J2, J6, J7, and J8 cable connectors can be found in the TP2-CK listing under the Accessories section of the last page


High-Density Dsub DB-44M, male plug, 44 Position

## CONNECTORS \& SIGNALS: FRONT PANEL

| J3: BRAKE |  |
| :---: | :--- |
| Pin | Signal |
| 5 | Brk 24V Input |
| 4 | Brk 24V Output |
| 3 | Brake A [OUT6] |
| 2 | Brake B [OUT7] |
| 1 | 24V Return |



J3: DRIVE CONNECTOR
Euro-style 3.5 mm male receptacle, 5 -position
Wago: MCS-MINI, 734-165/108-000
J3: CABLE CONNECTOR
Wago MCS-MINI 734-105/107-000
or 734-105/107-000
WAGO CONNECTOR TOOL
Contact opener: 734-191 operating tool

## CONNECTORS \& SIGNALS: END PANEL

J7, J8: AXIS A, B FEEDBACK

| PIN | SIGNAL | PIN | SIGNAL | PIN | SIGNAL |  | 37, 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Frame Gnd | 10 | A(B) Enc /B | 19 | N/C |  |  |
| 2 | [IN19(22)] A(B) | 11 | A(B) Enc B | 20 | N/C |  | J7, J8: FEEDBACK |
| 3 | [IN20(23)] A(B) | 12 | A(B) Enc /A | 21 | N/C |  | J7, J8: TP2 CONNECTOR |
| 4 | [IN21(24)] A(B) | 13 | A(B) Enc A | 22 | N/C |  | High-Density Dsub DA-26F, female receptacle, 26 Position |
| 5 | Signal Gnd | 14 | A(B) Enc /S | 23 | N/C |  | female receptacle, 26 Position |
| 6 | A(B) +5VOut1(2) | 15 | A(B) Enc S | 24 | N/C |  | J7, J8: CABLE CONNECTOR |
| 7 | [IN9(18)] A(B) Motemp | 16 | Signal Gnd | 25 | Signal Gnd |  | male plug, 26 Position |
| 8 | A(B) Enc /X | 17 | A(B) +5VOut1(2) | 26 | Signal Gnd |  |  |
| 9 | A(B) Enc $X$ | 18 | N/C |  |  |  |  |


$J 11$


19, J10: MOTOR OUTPUTS

| Signal | Pin |
| ---: | :---: |
| Motor Phase A | 5 |
| Motor Phase /A | 4 |
| Motor Phase B | 3 |
| Motor Phase /B | 2 |
| Frame Ground | 1 |

J9, J10: DRIVE CONNECTORS
Euro-style 5.08 mm male receptacle, 5 -position Wago: MCS-MIDI, 231-565/108-000
19, J10 CABLE CONNECTORS
Wago MCS-MIDI Classic 231-305/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-291 operating tool

J11:+HV \& AUX POWER

| Signal | Pin |
| :--- | :---: |
| Aux HV | 3 |
| HV | 2 |
| HV Ground | 1 |

J11: DRIVE CONNECTOR
Euro-style 5.08 mm male receptacle, 3-position
Wago: MCS-MIDI, 231-563/108-000
J11: CABLE CONNECTOR
Wago MCS-MIDI, 231-303/107-000
WAGO CONNECTOR TOOL
Contact opener: 231-291 operating tool

## WIRING

24V \& BRAKE: J3
Wago MCS-MINI: 734-105/031-000, female connector; with screw flange, 5 -pole; pin spacing $3.5 \mathrm{~mm} / 0.138$ in

Conductor capacity
Bare stranded:
Insulated ferrule:
Stripping length:
Operating tool:

AWG 28~16 [0.08~1.5 mm2]
AWG $24 \sim 16$ [0.25~1.5 mm2]
$0.24 \sim 0.28$ in [ $6 \sim 7 \mathrm{~mm}]$
Wago MCS-MINI: 734-231


FERRULE PART NUMBERS: SINGLE WIRE INSULATED

| AWG | $\mathrm{mm}^{2}$ | Color | Mfgr | PNUM | A | B | C | D | E | SL |
| :---: | :---: | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 1.0 | Red | Wago | $216-223$ | $12.0(.47)$ | $6.0(.24)$ | $1.4(.06)$ | $3.0(.12)$ | $3.5(.14)$ | $8(.31)$ |
| 20 | 0.75 | Gray | Wago | $216-222$ | $12.0(.47)$ | $6.0(.24)$ | $1.2(.05)$ | $2.8(.11)$ | $3.3(.13)$ | $8(.31)$ |
| 22 | 0.5 | White | Wago | $216-221$ | $12.0(.47)$ | $6.0(.24)$ | $1.0(.04)$ | $2.6(.10)$ | $3.1(.12)$ | $7.5(.30)$ |

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

| AWG | $\mathrm{mm}^{2}$ | Color | Mfgr | PNUM | A | B | C | D | E |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $2 \times 18$ | $2 \times 1.0$ | Red | Altech | 2776.0 | $15.4(.61)$ | $8.2[.32]$ | $2.4(.09)$ | $3.2(.13)$ | $5.8(.23)$ |
| $2 \times 18$ | $2 \times 1.0$ | Gray | Altech | 2775.0 | $14.6(.57)$ | $8.2(.32)$ | $2.0(.08)$ | $3.0(.12)$ | $5.5(.22)$ |
| $2 \times 20$ | $2 \times 0.75$ | White | Altech | 2794.0 | $14.6(.57)$ | $8.2(.32)$ | $1.7(.07)$ | $3.0(.12)$ | $5.0(.20)$ |
| $2 \times 20$ | $2 \times 0.75$ | Gray | TE | $966144-2$ | $15.0(.59)$ | $8.0(.31)$ | $1.70(.07)$ | $2.8(.11)$ | $5.0(.20)$ |
| $2 \times 22$ | $2 \times 0.50$ | White | TE | $966144-1$ | $15.0(.59)$ | $8.0(.31)$ | $1.40(.06)$ | $2.5(.10)$ | $4.7(.19)$ |



DOUBLE WIRE


MOTOR OUTPUTS AND HV/AUX POWER: J9, J10 \& J11

Wago MCS-MIDI Classic: 231-305/107-000 (J9, J10), 231-303/107-000 (J11),
female connector; with screw flange; pin spacing $5.08 \mathrm{~mm} / 0.2$ in
Conductor capacity
Bare stranded:
Insulated ferrule:
Stripping length:
Operating Tool:

AWG 28~14 [0.08~2.5 mm2]
AWG 24~16 [0.25~1.5 mm2]
8~9 mm
Wago MCS-MIDI Classic: 231-159

J9, J10


FERRULE PART NUMBERS: SINGLE WIRE INSULATED

| AWG | $\mathrm{mm}^{2}$ | Color | Mfgr | PNUM | A | B | C | D | E | SL |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 14 | 2.5 | Blue | Wago | $216-206$ | $15.0(0.59)$ | $8.0(0.31)$ | $2.05(.08)$ | $4.2(0.17)$ | $4.8(0.19)$ | $10(0.39)$ |
| 16 | 1.5 | Black | Wago | $216-204$ | $14.0(0.59$ | $8.0(0.31)$ | $1.7(.07)$ | $3.5(0.14)$ | $4.0(0.16)$ | $10(0.39)$ |
| 18 | 1.0 | Red | Wago | $216-223$ | $12.0(.47)$ | $6.0(.24)$ | $1.4(.055)$ | $3.0(.12)$ | $3.5(.14)$ | $8(.31)$ |
| 20 | 0.75 | Gray | Wago | $216-222$ | $12.0(.47)$ | $6.0(.24)$ | $1.2(.047)$ | $2.8(.11)$ | $3.3(.13)$ | $8(.31)$ |
| 22 | 0.5 | White | Wago | $216-221$ | $12.0(.47)$ | $6.0(.24)$ | $1.0(.039)$ | $2.6(.10)$ | $3.1(.12)$ | $7.5(.30)$ |

NOTES
PNUM = Part Number
SL = Stripping length
Dimensions: mm (in)


## THERMALS: POWER DISSIPATION

The top chart on this page shows the internal power dissipation for one axis of the TP2 under differing power supply and output current conditions. The + HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.

## TOTAL POWER DISSIPATION

Use this chart to find the total power dissipation for both axes.
Example:
Power supply HV $=65 \mathrm{Vdc}$
Axis 1 current $=7.5 \mathrm{~A}$, axis $2=9.0 \mathrm{~A}$
Total current $=16.5 \mathrm{~A}$
Total dissipation $=19$ Watts


## THERMALS: MAXIMUM OPERATING TEMPERATURE VS. DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions. Example:
Using the 19 W value from the calculations above, draw a vertical line. This shows that 24 C is the maximum operating temperature for NHSNF, and that any of the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C .
HSF $=$ Heat Sink (with) Fan
NHSF $=$ No Heat Sink (with) Fan
HSNF $=$ Heat Sink No Fan
NHSNF $=$ No Heat Sink No Fan

NHSF $=$ No Heat Sink (with) Fan
HSNF = Heat Sink No Fan
NHSNF $=$ No Heat Sink No Fan


## THERMALS: MOUNTING \& THERMAL RESISTANCE

MOUNTING
Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

THERMAL RESISTANCE
Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of ${ }^{\circ} \mathrm{C} / \mathrm{W}$ where the degrees are the temperature rise above ambient.
E.g., an drive dissipating 16 W mounted with no heatsink or fan would see a temperature rise of 38.2C above ambient based on the thermal resistance of 2.39C/W. Using the drive maximum heatplate temperature of 70 C and subtracting 38.2 C from that would give 31.7C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.


| NO HEATSINK, NO FAN | ${ }^{\circ} \mathbf{C} / \mathbf{W}$ |
| :--- | :---: |
| CONVECTION | 2.32 |

TOP VIEWS VERTICAL MOUNTING



| HEATSINK, NO FAN | ${ }^{\circ} \mathbf{C} / \mathbf{W}$ |
| :--- | :---: |
| CONVECTION | 1.28 |



| HEATSINK + FAN | ${ }^{\circ} \mathbf{C} / \mathbf{W}$ |
| :--- | :---: |
| FORCED-AIR, 300 LFM | 0.61 |

## HEATSINK KIT INSTALLATION

- Standard heatsink for Stepnet Plus Panel TP2
- Complete kit for user installation of the heatsink


## DESCRIPTION

The TP2-HK is a kit containing a heatsink and mounting hardware for field installation of a standard heatsink onto a TP2 model stepper drive.
To order an TP2 drive with heatsink fitted at the factory, add " -H " to the model part number.

TP2-HK HEATSINK KIT PART LIST

| Qty | Description |  |
| :---: | :--- | :---: |
| 1 | Heatsink, standard, TP2-HS |  |
| 1 | Thermal material, 4×4 in. |  |
| 1 | Kit, Heatsink Hardware, TP2 |  |
|  | 4 |  |
|  | 4 |  |
|  | 4 |  |

## INSTALLATION

1) Place the heatsink fins-down on a work surface. Orient the heatsink so that the edge with part number is away from you. The hole for the TP2 grounding lug should be to your left.
2) Remove the clear protective film from the thermal material and discard it. Place the thermal material onto the heatsink in the placement area which is marked with four white "L".
Apply light pressure to ensure that the thermal material is flat.
3) Peel the white protective layer away from the thermal material. Do this slowly from one corner so as not to lift the thermal material from the heatsink.
4) Align the TP2 as shown and lower onto the heatsink. If needed to adjust the position, lift it away from the thermal material and lower onto the heatsink again.
5) Install the four mounting screws with flat washers and tighten evenly. Torque to 17.8 lb -in ( 2.0 Nm ) maximum.



Mounting screws:


## ORDERTNG GUIDE

| TP2-090-06 | Stepnet Plus 2-Axis Panel CANopen stepper drive, 3/6 A, 90 Vdc |
| :--- | :--- |
| TP2-090-14 | Stepnet Plus 2-Axis Panel CANopen stepper drive, 7/14 A, 90 Vdc |

Add -H to model number for factory-installed heatsink

| Example: Order one Stepnet Plus TP2 drive, $7 / 14 \mathrm{~A}$, with connector kit, serial cable kit, heatsink fitted at the factory: |  |
| :---: | :--- |
| Qty | Item |
| 1 TP2-090-14-H Remarks <br> 1 TP2-CK Stepnet Plus TP2 2-axis servo drive, and factory-mounted heatsink <br> 1 SER-CK TP2 Connector Kit |  |

## ACCESSORIES

|  | Qty | Ref | Name | Description | Manufacturer P/N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TP2-CK <br> Connector Kit | 1 | J11 | DC HV | Plug, 3 position, 5.08 mm , female | Wago: 231-303/107-000 (Note 1) |
|  | 1 |  |  | Strain relief, snap-on, $5.08 \mathrm{~mm}, 3$ position, orange | Wago: 232-633 |
|  | 2 | J9, J10 | Motor | Plug, 5 position, 5.08 mm , female | Wago: 231-305/107-000 (Note 1) |
|  | 2 |  |  | Strain relief, snap-on, 5.08 mm , 4 position, orange | Wabo: 232-635 |
|  | 1 | J9~J11 | Tool | Tool, wire insertion \& extraction, 231 series | Wago: 231-159 |
|  | 1 | J3 | Brake | Plug, 5 position, 3.5 mm , female | Wago: 734-105/107-000 (Note 1) |
|  | 1 |  |  | Strain relief, snap-on, 3.5 mm , 5 position, grey | Wago: 734-605 |
|  | 1 |  | Tool | Tool, wire insertion \& extraction, 734 series | Wago: 734-231 |
|  | 1 | J6 <br> Note 2 | Safety | Connector, DB-9M, 9-position, standard, male | TE/AMP: 205204-4 |
|  | 9 |  |  | AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash | TE/AMP: 66506-9 |
|  | 1 |  |  | Metal Backshell, DB-9, RoHS | 3M: 3357-9209 |
|  | 4 |  |  | Jumper, with pins crimped on both ends | Copley: 10-75177-01 |
|  | 1 | J1 | Control | Connector, high-density DB-44M, 44 position, male, solder cup | Norcomp: 180-044-103L001 |
|  | 1 |  |  | Metal Backshell, DB-25, RoHS | 3M: 3357-9225 |
|  | 1 | J2 | I/O | Connector, high-density DB-26F, 26 position, female, solder cup | Norcomp: 180-026-203L001 |
|  | 2 | J7, 18 | Feedback | Connector, high-density DB-26M, 26 position, male, solder cup | Norcomp: 180-026-103L001 |
|  | 3 | J2, J7, J8 |  | Metal Backshell, DB-15, RoHS | 3M: 3357-9215 |
| SER-CK | 1 | J5 | RS-232 | Serial Cable Kit |  |
| TP2-NC-10 | 1 | J8 | Network | CAN network cable, 10 ft (3 m) |  |
| TP2-NC-01 | 1 |  |  | CAN network cable, 1 ft ( 0.3 m ) |  |

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above
Note 2: Insertion/extraction tool for 36 contacts is AMP/Tyco 91067-2 (not included in TP2-CK)

16-01444 Document Revision History

| Revision | Date | Remarks |
| :--- | :--- | :--- |
| 00 | March 27,2017 | Preliminary version |
| 02 | April 19,2017 | Initial released version |
|  |  |  |
|  |  |  |

Note: Specifications subject to change without notice

